The deubiquitinating enzyme, ubiquitin‐specific peptidase 50, regulates inflammasome activation by targeting the ASC adaptor protein

نویسندگان

  • Jae Young Lee
  • Dongyeob Seo
  • Jiyeon You
  • Sehee Chung
  • Jin Seok Park
  • Ji‐Hyung Lee
  • Su Myung Jung
  • Youn Sook Lee
  • Seok Hee Park
چکیده

NOD-like receptor family protein 3 (NLRP3)-mediated inflammasome activation promotes caspase-1-dependent production of interleukin-1β (IL-1β) and requires the adaptor protein ASC. Compared with the priming and activation mechanisms of the inflammasome signaling pathway, post-translational ubiquitination/deubiquitination mechanisms controlling inflammasome activation have not been clearly addressed. We here demonstrate that the deubiquitinating enzyme USP50 binds to the ASC protein and subsequently regulates the inflammasome signaling pathway by deubiquitinating the lysine 63-linked polyubiquitination of ASC. USP50 knockdown in human THP-1 cells and mouse bone marrow-derived macrophages shows a significant decrease in procaspase-1 cleavage, resulting in a reduced secretion of IL-1β and interleukin-18 (IL-18) upon treatment with NLRP3 stimuli and a reduction in ASC speck formation and oligomerization. Thus, we elucidate a novel regulatory mechanism of the inflammasome signaling pathway mediated by the USP50 deubiquitinating enzyme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DUB-1, a deubiquitinating enzyme with growth-suppressing activity.

Cytokines regulate cell growth by inducing the expression of specific target genes. Using the differential display method, we have cloned a cytokine-inducible immediate early gene, DUB-1 (for deubiquitinating enzyme). DUB-1 is related to members of the UBP superfamily of deubiquitinating enzymes, which includes the oncoprotein Tre-2. A glutathione S-transferase-DUB-1 fusion protein cleaved ubiq...

متن کامل

Caspase-1 Engagement and TLR-Induced c-FLIP Expression Suppress ASC/Caspase-8-Dependent Apoptosis by Inflammasome Sensors NLRP1b and NLRC4

The caspase activation and recruitment domain (CARD)-based inflammasome sensors NLRP1b and NLRC4 induce caspase-1-dependent pyroptosis independent of the inflammasome adaptor ASC. Here, we show that NLRP1b and NLRC4 trigger caspase-8-mediated apoptosis as an alternative cell death program in caspase-1-/- macrophages and intestinal epithelial organoids (IECs). The caspase-8 adaptor FADD was recr...

متن کامل

Presence of The NLRP3 Inflammasome Components in Semen of Varicocele Patients

Background: Varicocele is a common cause of male infertility with multifactorial etiology. Inflammation is a characteristic pathological event that occurs in the testis tissue following the varicocele. The aim of this study was to investigate expression of nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome components and cytokines in semen of varicocele and control subject...

متن کامل

Silencing of ASC in Cutaneous Squamous Cell Carcinoma

Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is an important adaptor protein for inflammasome activation, mediating the secretion of protumorigenic innate cytokines. However, ASC is also known to trigger apoptosis in tumor cells, acting as a tumor-suppressor gene, which is lost in several human cancers. The aim of this study was to evaluate the clinical ...

متن کامل

Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain.

Activation of caspase 1 is essential for the maturation and release of IL-1beta and IL-18 and occurs in multiprotein complexes, referred to as inflammasomes. The apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is the essential adaptor protein for recruiting pro-caspase 1 into inflammasomes, and consistently gene ablation of ASC abolishes caspase 1 activatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 591  شماره 

صفحات  -

تاریخ انتشار 2017